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Uniqueness theorems are proved for inverse two-dimensional problems of the theory 
of heat conduction in two different formulations. 

i. The problem of restoring the initial temperature field distribution over the section 
of a specimen by measurements performed on its surface in recent time is considered. Such a 
problem occurs particularly in studying the control problems of certain technological process- 
es associated with the heat treatment of metallic articles, and corresponds to the possibili- 
ties of measurement techniques. The problem is among the class of inverse problems, for an 
appropriate formulation assuring uniqueness of the solution; this latter can be found by using 
the method of regularization [I], which is effective in a broad circle of heat-conduction prob- 
lems [2, 3]. 

The present paper is devoted to clarifying sufficient conditions for the uniqueness of 
the solution of the problem formulated. The question of the restoration of the initial tem- 
perature distribution was examined in addition to others in [4] as well as in [5]. However, 
a given temperature distribution everywhere in a certain recent time corresponds to the prob- 
lem formulations. Questions of uniqueness are not touched upon in [4, 5]. Questions of 
uniqueness were considered in addition to the problem of stability of the solution in [6, 7], 
where the initial temperature distribution was desired in [6]. 

Similarly to [6, 7], we use the minimal experimentally accessible initial information 
and, in contrast to [6], for the solution of the two-dimensional problem. Its general mathe- 
matical formulation can be given as follows: find the solution of the operator equation A~ = 

U, where ~(M), MEQ is the initial temperature field in the domain ~; U = U(P, t), P~0~, 

0 < tx ~ t < t2 is the measured temperature on a certain part of the specimen surface in the 
time interval [tt, ta], and A is a linear integral operator. The uniqueness is analyzed below 
for two specific formulations of the problems. 

2. Let us consider the heat-conduction equation in the two-dimensional case in a Carte- 
sian coordinate system: 

Ut=a2(U,~.~+Uvv), x, yCg-, ~: O < x < h ,  O<y-</2; 

U (x, V, O)= Uo (x, V) 

for Convective heat transfer from a medium of zero temperature according to Newton's law: 

(i) 

(Ux + hU)lx=l, = O; (Ux--.hU)Ix= o = O; (Uv + hU)[v=t, = O; (2)  

(U~ - -  hU)ty=o = O. 

The p r o b l e m  f o r m u l a t e d  c o r r e s p o n d s  t o  c o o l i n g  o f  a r o d  o f  r e c t a n g u l a r  s e c t i o n ,  o f  i n f i n i t e  
length in the 0z axis direction. We assume that measurement of the temperature of part of the 
specimen surface is possible during a certain time interval, i.e., the following function is 
known 

U(x, O, O=~(x,  t), O<h~t<~t2,  O~x~l~ .  (3)  

Let us prove that a unique determination of the initial distribution go(x, y) is possible 
according to this function ~ (x, t). The solution of problem (1)-(2) is represented in the 
form [8] 
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U (x, y, t) ---- ~ Am,~ exp (-- a 2 (E,~ q- V]) t) X,~ (x) Y~ (y), 
/ n , t / ~  ] 

X~ (x) = sin (E~x q- co~), Y,~ (y) = sin (V~F @ ~%), (4) 

tg~o~=;~ /h ,  0 < ~ < ~ / 2 ,  tgo),~= vdh,  0<o~,~<~/2. 

The v a l u e s  of  X m and ~n a r e  d e t e r m i n e d  as f o l l o w s  

ctg Gml~) = 0,5 @m/h --  h/Km), ctg (a~l~) = 0,5 (~ /h  --  h/~).  

T h e r e f o r e ,  t he  p rob lem r e d u c e s  to  p r o v i n g  the  un ique  d e t e r m i n a t i o n  of  the  c o e f f i c i e n t s  Amn 
a c c o r d i n g  to  the  known f u n c t i o n  q0 (x,  t ) :  

(p (x, t) = ~ Amn exp (--  a 2 ()~ q- V~) t) sin ()~x q- (o~) sin o)~, 
m , n = l  ( 5 )  

O ~ x ~ l ~ ,  h ~ t ~ t 2 .  

Let us convolute the right and left sides of (5) with Xm(x) 

i 2 S (p (x, t) sin (Kmx q- o~) dx = A~=exp ( - -  a 2 (~2 q_ D~) r sin con Itx=l!~, 
0 n ~ l  

where m is a fixed number. Or in another form 

(6) 

~m (t) = ~ A ~  exp (--  a 2 ()~ q- V]) t) sin o)~, 

ii 

j' ~ (x, t) sin (X~x q- ~ )  dx 

% (t) = ~ 
IIX~(x)l[, 2, 

Let us examine the series obtained for fixed m, we prove its uniform convergence on the half- 
axis [0, =]. To do this, we estimate Amn. We execute the estimates in the class C4 of func- 
tions Uo(x, y) having bounded mixed derivatives in ~ to the fourth order. We have the follow- 

ing formula for Amn 

l 1 l~ 

J ,I Uo y) xm (y) d ey 
A ~  = 0 0 (7) 

11 AI/~ 

By integrating by parts four times in succession in both variables x, y, we hence obtain the 
following estimate from (7) in the mentioned class C, 

M (8) 
[Am. l<  2 2 , 

where M is a constant dependent on the maxima of the moduli of the mixed derivatives [[Uoxyl]C, 
2 2 

{]Uoxxy]]C, [[Uoxyy][C , ]]Uoxxyy]]C. It is known [9] that as m, n § ~ X m and Vn have the asymptotic 

representation 

; ~  ~ ( m - - I  , ~ - ~  n - - 1  
lo 

(9) 

Now let us consider the function of a complex variable ~m (z) = ~Amnexp(--aZ()~@ V~)z)sin~ in 

the domain Re z > 0. This function is the analytic continuation of the function ~m(t) CC[il,td 
with segment [tl, t2] in the right half-plane. Here @m(Z) is represented by a series of ana- 
lytic functions uniformly convergent in afiy closed subdomain of the domain Re z > 0 (from 
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(8)); hence [i0], it is the unique analytic continuation of the function ~m(t) in the domain 
Rez>0. 

Let us consider ~m(Z) for z = t > 0. It follows from (8)-(9) that 

n = l  n = l  n = l  

Let C n = ~n a, C n 0(n -2) as n -+ ~, therefore, C n converges, hence by the Weierstrass 

criterion, the series 2 Amnexp (--a2(~ Jr ~)t)sinon converges uniformly for 0 ~ t < ~. 
n=l 

Let us apply the Laplace t r ans fo rm to ~m(t) (because  of the uniform convergence in [0, 
oo] integration term by term is possible [II]): 

*"* (P)= i exp (-- pl) ,m (t) dt 2 Am. sin mn (P jr  aZ( L2 + 2 "i = ~ ) )  , Re p > -  a~ (~?~ + ~). 
0 n = l  

(lO) 

Let us examine series (i0) obtained in the whole complex plane. The terms of this series are 
analytic functions in the whole plane, with the exception of the points Pn = -~2(X~ + ~), 
n = I, 2, ..., =, and the series converges uniformly (because of (8)) in any finite part of 
the plane not containing these points. Therefore [i0], the sum of the series (I0) is an ana- 
lytic function in the whole complex plane with the exception of the points Pn = -xz2(X~ + ~)" 
Since for Re p >-~2(X~ + ~) this sum agrees with ~(p), then it yields a unique analytic 
continuation in the whole complex plane except for the singular points Pn, which are isolated 
first-order poles. Let us now fix a certain number n and let us take the Cauchy integral of 
@~(p) over a circle of small radius p around the points Pn" Then 

.•* = 2niAm. sin oJ., sine% =/= O. (11) (p) dp 
C o 

It follows from (ii) that Amn is determined uniquely for arbitrary m and n, and therefore 

U0(x, y)= ~ Amr~Xra(x) Yn(Y) , i.e., uniqueness of the solution of the inverse problem holds. 
m,n=l 

3. Let us again consider problem (1)-(2). Now, let the temperature on the surface mea- 
sured similarly to [6] by a certain sensor moving according to a linear law be known as the 
input data. The following function is therefore known 

~(t)  = U(x(t) ,  O, t), x(t) = at, O<t l<~t<~t~ ,  (12) 

O~tx<at2<l l .  
Let us prove the uniqueness  of  r e s t o r i n g  the i n i t i a l  t empera tu re  Uo(x, y) by means of  ~ ( t ) .  
This l a t t e r  i s  r e p r e s e n t e d  by the s e r i e s  

q~ (t) ----- ~ Am,~ exp (-- a z (~,~ + ~ )  t) sin o~. sin (%,n~t 4- ore), sin o~m =~ 0, 0 < t~ ~ t ~ t~. 

Let  us examine the  f u n c t i o n  of  the complex v a r i a b l e  

(13) 

q~(z) = ~ Am. e x p ( - - a 2 ( ~ j r  V~)z)sino~ sin(~,~o~z + ~m) (14) 
z_J 

ra,n=l 

in the domain Re z > 0. Series (14) of analytic functions converges uniformly in any closed 

subdomain of the domain Re z > 0 (the series ~ IAmnl = M ~ m-2n -z because of (9) and such z~ ~., 
m,n=1 m , n = l  
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a double series converges). Hence, there results [i0] that ~(z) is a unique analytic contin- 

uation of ~(1)CC[t,,t~] in the domain Re z > 0. We examine (14) for z = t > 0. It follows from 

(8) that the series (13) converges uniformly for 0 ~ t < ~. We apply the Laplace transform 
to r (t) 

2 2 2 9 ~I~ A,~ p+a()~m+ F ~ ) s i n ~ + ; L m a c o s ~ %  sino~, R e p > - - a 2 ( ~ , ~ +  FI). (15)  go* (p) = Z a  IP § a~ (~2 § F~)] = § ;L~, c,.2 

Taking (8)-(9) into account and executing the same reasoning as in Sec. 2, we obtain that se- 

ries (15) determines an analytic function on the whole plane with the exception of the points 

Pmn~'2 = _~2(X m + ~n ) +_ iXm~ , which are isolated first-order poles. As is easy to see, a mutual- 
and 2 ly one-to-one correspondence exists between the points Pmn Pmn and the numbers (m, n), and 

therefore there are no multiple roots. Let us set arbitrary m and n and let us take the Cauchy 
i . integral of ~*(p) over a circle of small radius p with center at Pmn" 

q~ cp* (p) dp = A,~ sin ~%q (m, n, r162 
t o 

q (m, n, cz) = a~ (~'+4- p2) (sin o~ - -  1) 4- ;~m~ cos ~0~-- i~m~__ ' 

;Lm~ 

(16) 

where q(m, n, ~) # 0 for any m, n, ~, since Im q = --Xm ~ # 0. 

The Amn is determined uniquely from (16), and therefore 

Uo (x, v) = 2 A~,,X~(x) r~ (v). 

4. On the basis of the facts established in this paper about the uniqueness of the in- 
verse problems, stable numerical algorithms can be constructed for the restoration of the ini- 
tial temperature field and, as a result, a number of control problems for technological pro- 
cesses can be solved. 
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