UNIQUENESS IN CERTAIN INVERSE PROBLEMS OF THE
THEORY OF HEAT CONDUCTION

E. V. Bulychev and V., B. Glasko UDC 536.24.01

Uniqueness theorems are proved for inverse two-dimensional problems of the theory
of heat conduction in two different formulations.

1. The problem of restoring the initial temperature field distribution over the section
of a specimen by measurements performed on its surface in recent time is considered. Such a
problem occurs particularly in studying the control problems of certain technological process-
es associated with the heat treatment of metallic articles, and corresponds to the possibili-
ties of measurement techniques. The problem is among the class of inverse problems, for an
appropriate formulation assuring uniqueness of the solution; this latter can be found by using
the method of regularization [1], which is effective in a broad circle of heat-conduction prob-
lems [2, 3].

The present paper is devoted to clarifying sufficient conditions for the uniqueness of
the solution of the problem formulated. The question of the restoration of the initial tem-
perature distribution was examined in addition to others in [4] as well as in [5]. However,
a given temperature distribution everywhere in a certain recent time corresponds to the prob-
lem formulations. Questions of uniqueness are not touched upon in [4, 5]. Questions of
uniqueness were considered in addition to the problem of stability of the solution in [6, 7],
where the initial temperature distribution was desired in [6].

Similarly to [6, 7], we use the minimal experimentally accessible initial information
and, in contrast to [6], for the solution of the two-dimensional problem. Its general mathe-
matical formulation can be given as follows: find the solution of the operator equation AQ=
U, where ¢(M), MEQ is the initial temperature field in the domain Q; U = U(P, t), PEOQ,
0<t, £t< t; is the measured temperature on a certain part of the specimen surface in the
time interval [t;, t.], and A is a linear integral operator. The uniqueness is analyzed below
for two specific formulations of the problems.

2. Let us consider the heat-conduction equation in the two-dimensional case in a Carte-
sian coordinate system:

Ut:az(Uxx"{"Uyy), xy yEQ, Q: O<x<l]_, O<y<l21 (l)
U(X, Y, 0)=U0(x1 9

for convective heat transfer from a medium of zero temperature according to Newton's law:

U+ hU),_,, = 0 Us—HD)],_y = 05 Uy + hU)l,_,, = 0; 2
Uy — b)Y,y = 0.

The problem formulated corresponds to cooling of a rod of rectangular section, of infinite
length in the 0z axis direction. We assume that measurement of the temperature of part of the
specimen surface is possible during a certain time interval, i.e., the following function is
known

U, 0, ) = o(x, 1), 0<HSIKh, 0<xh (3

Let us prove that a unique determination of the initial distribution Uo(x, y) is possible
according to this function ¢ (x, t). The solution of problem (1)-(2) is represented in the
form [8]
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Ulx, g, =¥ Amnexp(— & (i 1) ) X () ¥ (9),
m,n=1
Xen () = 801 (s + 0e), V' (9) = 5in (g + @0,
tg0n = Am/h, 0 0n<<w/2, tg0, = pa/h, 0 <<o,<<w/2.

(4)

The values of Am and U, are determined as follows

ctg (hpl)) = 0.5 A/ — Nha), ctg (uals) = 0.5 (np/h — hjuy).

Therefore, the problem reduces to proving the unique determination of the coefficients Ann
according to the known function ¢(x, t):

¢ (x, 1) = 2 Apnexp (— a? (M 1) 2) sin (Apx + @p) sin @y,
m,n=1 (5)
0L ae<Ch, Ity

Let us convolute the right and left sides of (5) with Xy(x)

I I
[ 00 Dsin (st + 0) dx = ) Annexp (— @ (b + pa) ) sin 0, XL, (6)
0 n=1

where m is a fixed number. Or in another form

) = 3 Aupexp (- 0+ ud) g sino,
a=1 ’
1

y @{x, 1)sin (At 4 o) dx
0

m (£) =
¥n () I Xm(®)IZ,

Let us examine the series obtained for fixed m, we prove its uniform convergence on the half-
axis [0, =]. To do this, we estimate Ay,. We execute the estimates in the class C, of func-
tions Uo(x, y) having bounded mixed derivatives in Q to the fourth order. We have the follow-
ing formula for Ay, :

[N
V| Uo e 9) Xon () Vo (3) diedy
A4 0 0 . . . (7)
" X mllZ, NY RlIZ,

By integrating by parts four times in succession in both variables x, y, we hence obtain the
following estimate from (7) in the mentioned class C,

where M is a constant dependent on the maxima of the moduli of the mixed derivatives Hony“C,
WoxxylCs MUguyyliCs 1UgypoIC. It is known [9] that as m, n > An and p2 have the asymptotic
representation
a2 Tt 2 P) 41 2
xm~[l—(m—~1)}, p;l~[l (ra—l)jl. )
1 2

Now let us consider the function of a complex variable VYp (2) = :S‘4mnexp(__mqk;.+ sz)ﬁﬂwn in
n=1
the domain Re z > 0. This function is the analytic continuation of the function ¥ (f) € i

with segment [t;, t2] in the right half-plane. Here yYn(z) is represented by a series of ana-
lytic functions uniformly convergent in afdy closed subdomain of the domain Re z > 0 (from
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(8)); hence [10], it is the unique analytic continuation of the function Pp(t) in the domain
Re z > 0.

Let us consider yp(z) for z = t > 0. It follows from (8)-(9) that

W O = | Y, Amn exp(— @ (b4 p) ) sin @ | < ) 1Amal X0 (— @) < M (}jl pat )
n=1 n=1 ’ n=

s Cy = 0(n"?) as n » =, therefore, :S C, converges, hence by the Weierstrass
et

-2

Let Cn = M,

criterion, the series 22 Amn exp (—a2(0) +—Hﬁ)ﬂ5h1wn converges uniformly for 0 € t < =,

n=1

Let us apply the Laplace transform to yp(t) (because of the uniform convergence in [0,
«] integration term by term is possible [11]):

oo

b (D)= [ exp(— pt) ¥ (t) dt = Z Amnsin o, (p -+ @0n+ po)™, Rep>—a(hn+ ui). (10)
n=1

0

Let us examine series (10) obtained in the whole complex plane. The terms of this series are
analytic functions in the whole plane, with the exception of the points Pp = —az(ké + u;),
n=1, 2, ..., @, and the series converges uniformly (because of (8)) in any finite part of
the plane not containing these points. Therefore [10], the sum of the series (10) is an ana-
lytic function in the whole complex plane with the exception of the points Pn = —az(A; + u;).
Since for Re p > —a®(A\] + u}) this sum agrees with y¥(p), then it yields a unique analytic
continuation in the whole complex plane except for the singular points p,, which are isolated
first-order poles. Let us now fix a certain number n and let us take the Cauchy integral of

wa(p) over a circle of small radius p around the points p,. Then

§ ¥ (p)dp = 2idmy sin oy, sine, 5 0. (11)
c
1]
It follows from (11) that Ay, is determined uniquely for arbitrary m and n, and therefore
Up(x, 9) = 22 A X ®) Y0 (y) , i.e., uniqueness of the solution of the inverse problem holds.
m,n=1

3. Let us again consider problem (1)-(2). ©Now, let the temperature on the surface mea-
sured similarly to [6] by a certain sensor moving according to a linear law be known as the
input data. The following function is therefore known

o) =Ux(t), 0, 1), x(t) =at, 0<t, <t <t (12)
0< oty < aty < 1.

Let us prove the uniqueness of restoring the initial temperature Uo(x, y) by means of @(t).
This latter is represented by the series

W)= Y Annexp(—a i+ uh)f)sino, sin(nat + op), sino,£0, 0<t <t <ty (13)

m,n=]

Let us examine the function of the complex variable

P@ =3 Amnexp(—@(n+ p2)2)sino, Sin oz + On) 14

m,n=1
in the domain Re z > 0. Series (14) of analytic functions converges uniformly in any closed

oo o

subdomain of the domain Re z > 0 (the series ZS [Amn] = M :S m-2n-2 because of (9), and such

m,n=1 mon=1
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a double series converges). Hence, there results [10] that ¢(z) is a unique analytic contin-
uvation of ®()€Cy,.1,1 in the domain Re z > 0. We examine (14) for z = t > Q. It follows from

(8) that the series (13) converges uniformly for 0 € t < », We apply the Laplace transform
to ¢ (t)

p%Aa%k;—k;ﬁ)ﬁnm;4—hmzcosmn sin oy, R8p:>-aﬂﬂ%4-uﬁ. (15)
[p 4 @ (hin + pa)l® -+ Amo?

(P* (P) = 2 Amn
m,n=1
Taking (8)~(9) into account and executing the same reasoning as in Sec. 2, we obtain that se-
ries (15) determines an analytic function on the whole plane with the exception of the points
Pmd’ = —a®(\2 + u2) + idje, which are isolated first-order poles. As is easy to see, a mutual-
ly one-to-one correspondence exists between the points p&n and p;n and the numbers (m, n), and

therefore there are no multiple roots. Let us set arbitrary m and n and let us take the Cauchy
integral of ©*(p) over a circle of small radius p with center at pén:

$ 0* (p)dp = Amnsino,g(m, n, @), (16)
o
g(m, n, @)= a? (7\4,271 - u,%) (sin ®, — 1) + Ao cos 0, — iAya ’
A
wvhere q(m, n, &) # 0 for any m, n, a, since Im q = —Apa # 0.

The Ap, is determined uniquely from (16), and therefore

Us(r )= S AmnXn (9 Y (6)

m,n=1

4, On the basis of the facts established in this paper about the uniqueness of the in-
verse problems, stable numerical algorithms can be constructed for the restoration of the ini-
tial temperature field and, as a result, a number of control problems for technological pro-
cesses can be solved.
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